MTH 530, Abstract Algebra I (graduate) Fall 2012 , Exam number one

Ayman Badawi

QUESTION 1. Let x and y be elements in a group G such that $x y \in Z(G)$. Prove that $x y=y x$.

QUESTION 2. a) Let G be a group such that each non identity element of G has prime order. If $Z(G) \neq\{e\}$, then prove that every non identity element of G has the same order and hence G must be group-isomorphic to Z_{p} for some prime p.

Find an example of a non-abelian group G where each nonidentity element has prime order.

QUESTION 3. Let $H=\{x \in U(2012)|5|(x-1)\}$. Prove that H is a subgroup of $U(2012)$.

QUESTION 4. Let D be a group of order q^{2} for some prime number q. Prove that D must be an abelian group?

QUESTION 5. Prove that A_{4} does not have a subgroup of order 6 .

QUESTION 6. Let G be a group containing more than 8 elements of order 20. Prove that G is never cyclic.

QUESTION 7. Let $\alpha=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) 0\left(\begin{array}{lll}1 & 2 & 5\end{array} 6\right) \in S_{6}$. Find $|\alpha|$ and α^{35}

QUESTION 8. Assume $|D|=55$ and D has exactly one subgroup of order 5 . Prove that D must be a cyclic group.

QUESTION 9. Let M, F be distinct proper subgroups of a group D such that D / F is group-isomorphic to D / F. Can we conclude that M is isomorphic to F ? If yes, then prove it. If not, then give me a counter example.

QUESTION 10. Let D be a group of order $n>1$ and m be a positive integer such that $\operatorname{gcd}(n, m)=1$. Let $b \in D$, show that there exists a unique element $f \in D$ such that $f^{m}=b$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

